مقایسه روش های طبقه بندی، شبکه عصبی مصنوعی و رگرسیون چندمتغیره در برآورد بازیابی فلز از بلوک کانسنگ
نویسندگان
چکیده مقاله:
با توجه به نقش بازیابی در محاسبه ارزش اقتصادی بلوک کانسنگ و تأثیر مقدار این ارزش بر محاسبات طراحی و برنامهریزی تولید معدن، تعیین بازیابی فلز از بلوک کانسنگ ارسالی به کارخانه فرآوری، از اهمیت بالایی برخوردار است. هدف از این پژوهش، بررسی قابلیت برآورد بازیابی بلوک کانسنگ بهصورت کیفی و با روشهای مبتنی بر طبقهبندی دادهها از مجموعه روشهای دادهکاوی و بهصورت کمّی، با دو روش رگرسیون چندمتغیره و مدل هوشمند شبکه عصبی، بر اساس دادههای آنالیز خوراک ورودی کارخانه است. برای نیل به این هدف، معدن مس میدوک مورد مطالعه قرار گرفت و با استفاده از 58 نمونه آنالیزشده عیار خوراک کارخانه، شامل عیارهای Cu، CuOو CuS و میزان بازیابی عنصر Cu در محصول نهایی، فرآیند پیشبینی بازیابی کل ذخیره بهصورت کیفی با روشهای طبقهبندی درخت تصمیم، قانون بیز و الگوریتم نزدیکترین همسایه انجام شد. برای برآورد کمّی میزان بازیابی ذخیره، مدل رگرسیون چندمتغیره و شبکه عصبی مصنوعی برای شاخصهای عیاری مذکور و میزان بازیابی بین 47 نمونه از 58 نمونه برقرار شد و توسط 11 نمونه آنالیزشده آزمایشی، مدلهای بهدستآمده اعتبارسنجی شدند. معیارهای میانگین خطا و جذر میانگین مربعات خطا در مدل رگرسیونی به ترتیب 021702/0 و 024972/0 و در مدل شبکه عصبی مصنوعی به ترتیب 015753/0 و 021404/0 محاسبه شدند. بنابراین مدل شبکه عصبی مصنوعی بهعنوان ابزار دقیقتری در پیشبینی بازیابی نسبت به مدل رگرسیون چندمتغیره عمل میکند. نتایج آنالیز حساسیت این مدل نشان داد، عیار Cu مهمترین عامل و عیار CuO و CuS نیز به ترتیب، دیگر عوامل تاثیرگذار بر تغییرات بازیابی هستند.
منابع مشابه
برآورد تغییرات سطح پوشش جنگل های رودسر با استفاده از روش های طبقه بندی شبکه عصبی مصنوعی و حداکثر احتمال
امروزه کسب آگاهی و دانش در رابطه با پوشش گیاهی نقش مهمی را در مدیریت خاکها ایفا میکند. بااین وجود برآورد پوشش گیاهی به روش معمولی که شامل برآورد کلی از پوشش گیاهی است هم زمانبر است و هم اطلاعات چندان دقیقی را به دست نمیدهد. از این رو سنجش از دور فنآوری بسیار مفیدی است که به دلیل کاهش زمان و هزینه، بر سایر روشها ارجحیت داده میشود. در این تحقیق سعی بر آن شد با استفاده از تکنیکهای سنجش از د...
متن کاملپیشبینی اسلامپ بتن با استفاده از مدل شبکه عصبی مصنوعی و روش رگرسیون چندمتغیره خطی
روشهای مختلفی جهت اندازهگیری کارایی بتن وجود دارد که یکی از متداولترین و معمولترین روشها، آزمایش اسلامپ است. جهت دستیابی به مخلوطهای بتنی با اسلامپ مورد نظر، باید مخلوطهای مختلف بتنی ساخته شود و آزمایش اسلامپ بر روی آنها صورت گیرد. جهت صرفهجویی در زمان، هزینه و مصالح بهتر است از روشهای هوشمندی جهت پیشبینی اسلامپ بتن بر اساس نتایج مربوط به تعداد معینی از مخلوطهای بتنی استفاده شود. د...
متن کاملواکاوی کارایی روش های مبتنی بر شبکه های عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش بینی کشند
پیشبینی تغییرات کشند، بهدلیل اهمیتی که در برنامهریزیهای ناوگان دریایی و نظامی، حمل و نقل و کشتیرانی، طراحی بنادر و سایر مسایل مرتبط با امور دریا دارد؛ از دیرباز مورد توجه بوده است. هدف این مطالعه بررسی عملکرد مدلهای شبکههای عصبی پیشخور با 3 الگوریتم یادگیری کاهش شیب، شیب مزدوج و لونبرگ-مارکوارد در پیشبینی ساعتی تغییرات کشند است. بهعلاوه در تحقیق حاضر، نتایج حاصل از مدل رگرسیون خطی چندم...
متن کاملتاثیر عوامل موثر بر بازیابی فروشویی ستونی کانسنگ اکسیدی مس با استفاده از شبکه عصبی مصنوعی
پیش بینی عملکرد متالورژیکی پارامتر کلیدی در هر فرآیند فرآوری است. بهینهسازی، کنترل و ارزیابی فرآیندها اغلب مستلزم یک مدل دقیق، مناسب و همه جانبه از فرآیند میباشد. ارائه چنین مدلی نیاز به شناسایی کلیه پارمترهای موثر در فرآیند و تاثیر همزمان این عوامل بر خروجی فرآیند دارد. استفاده از روشهای مختلف فروشویی برای فرآوری کانسنگها، بستگی به پارامترهای مختلفی از جمله عیار فلزات با ارزش موجود در کانس...
متن کاملپیشبینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)
با توجه به کمبود ایستگاههای اندازهگیری در کشور، لزوم استفاده از مدلهای تجربی برآورد دبی حداکثر لحظهای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیشبینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبیهای متوسط حداکثر روزانه و بارشهای متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای...
متن کاملمقایسه بین شبکه عصبی مصنوعی و تحلیل رگرسیون در برآورد مدت زمان قطع درخت
قطع درخت در بین مؤلفههای بهرهبرداری، اهمیت زیادی دارد. برآورد تولید تجهیزات جنگلی، بخش مهمی از مدیریت هزینهها در یک واحد جنگلداری است که با کاهش هزینههای عملیات همراه است. به عبارت دیگر، هزینههای بالای سرمایهگذاری در بهرهبرداری جنگل، دلیل خوبی برای تحقیقات مهندسی جنگل و همچنین مدلسازی زمان میباشد. روشهای زیادی مانند انواع رگرسیونها، منطق فازی، شبکههای عصبی و غیره برای پیشبینی زمان ق...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2
صفحات 21- 41
تاریخ انتشار 2020-06-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023